Internal
problem
ID
[6299]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
593
Date
solved
:
Tuesday, September 30, 2025 at 02:45:16 PM
CAS
classification
:
[[_Emden, _Fowler]]
ode:=a^2*x^(a-1)*y(x)+(1-2*a)*x^a*diff(y(x),x)+x^(a+1)*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=a^2*x^(-1 + a)*y[x] + (1 - 2*a)*x^a*D[y[x],x] + x^(1 + a)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(a**2*x**(a - 1)*y(x) + x**a*(1 - 2*a)*Derivative(y(x), x) + x**(a + 1)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : invalid input: 2*a