Internal
problem
ID
[6301]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
595
Date
solved
:
Friday, October 03, 2025 at 02:00:27 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(a0+a1*cos(x)^2)*y(x)+a^2*cos(x)*sin(x)*diff(y(x),x)+(1-a^2*cos(x)^2)*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a0 + a1*Cos[x]^2)*y[x] + a^2*Cos[x]*Sin[x]*D[y[x],x] + (1 - a^2*Cos[x]^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") a0 = symbols("a0") a1 = symbols("a1") y = Function("y") ode = Eq(a**2*sin(x)*cos(x)*Derivative(y(x), x) + (a0 + a1*cos(x)**2)*y(x) + (-a**2*cos(x)**2 + 1)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False