23.4.29 problem 29

Internal problem ID [6331]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 29
Date solved : Tuesday, September 30, 2025 at 02:47:33 PM
CAS classification : [NONE]

\begin{align*} y^{\prime \prime }&=\operatorname {f4} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \end{align*}
Maple
ode:=diff(diff(y(x),x),x) = f4(x)+f3(x)*y(x)+f2(x)*y(x)^2+(f1(x)-2*y(x))*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],{x,2}] == f4[x] + f3[x]*y[x] + f2[x]*y[x]^2 + (f1[x] - 2*y[x])*D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-(f1(x) - 2*y(x))*Derivative(y(x), x) - f2(x)*y(x)**2 - f3(x)*y(x) - f4(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (-f2(x)*y(x)**2 - f3(x)*y(x) - f4(x) + Der