Internal
problem
ID
[6339]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
37
Date
solved
:
Tuesday, September 30, 2025 at 02:51:51 PM
CAS
classification
:
[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=2*cot(x)*diff(y(x),x)+2*tan(y(x))*diff(y(x),x)^2+diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=2*Cot[x]*D[y[x],x] + 2*Tan[y[x]]*D[y[x],x]^2 + D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*tan(y(x))*Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)) + 2*Derivative(y(x), x)/tan(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE (sqrt(-2*tan(x)**2*tan(y(x))*Derivative(y(x), (x, 2)) + 1) + 1)/