23.4.41 problem 41

Internal problem ID [6343]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 41
Date solved : Tuesday, September 30, 2025 at 02:51:58 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} b \sin \left (y\right )+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 211
ode:=b*sin(y(x))+a*diff(y(x),x)^2+diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} 4 \int _{}^{y}\frac {1}{\sqrt {\left (4 a^{2}+1\right ) \left (4 \,{\mathrm e}^{-2 a \textit {\_a}} c_1 \,a^{2}-4 a b \sin \left (\textit {\_a} \right )+2 \cos \left (\textit {\_a} \right ) b +{\mathrm e}^{-2 a \textit {\_a}} c_1 \right )}}d \textit {\_a} a^{2}+\int _{}^{y}\frac {1}{\sqrt {\left (4 a^{2}+1\right ) \left (4 \,{\mathrm e}^{-2 a \textit {\_a}} c_1 \,a^{2}-4 a b \sin \left (\textit {\_a} \right )+2 \cos \left (\textit {\_a} \right ) b +{\mathrm e}^{-2 a \textit {\_a}} c_1 \right )}}d \textit {\_a} -c_2 -x &= 0 \\ -4 \int _{}^{y}\frac {1}{\sqrt {\left (4 a^{2}+1\right ) \left (4 \,{\mathrm e}^{-2 a \textit {\_a}} c_1 \,a^{2}-4 a b \sin \left (\textit {\_a} \right )+2 \cos \left (\textit {\_a} \right ) b +{\mathrm e}^{-2 a \textit {\_a}} c_1 \right )}}d \textit {\_a} a^{2}-\int _{}^{y}\frac {1}{\sqrt {\left (4 a^{2}+1\right ) \left (4 \,{\mathrm e}^{-2 a \textit {\_a}} c_1 \,a^{2}-4 a b \sin \left (\textit {\_a} \right )+2 \cos \left (\textit {\_a} \right ) b +{\mathrm e}^{-2 a \textit {\_a}} c_1 \right )}}d \textit {\_a} -c_2 -x &= 0 \\ \end{align*}
Mathematica. Time used: 3.893 (sec). Leaf size: 444
ode=b*Sin[y[x]] + a*D[y[x],x]^2 + D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\sqrt {4 a^2+1}}{\sqrt {4 e^{-2 a K[1]} c_1 a^2-4 b \sin (K[1]) a+e^{-2 a K[1]} c_1+2 b \cos (K[1])}}dK[1]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\sqrt {4 a^2+1}}{\sqrt {4 e^{-2 a K[2]} c_1 a^2-4 b \sin (K[2]) a+e^{-2 a K[2]} c_1+2 b \cos (K[2])}}dK[2]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\sqrt {4 a^2+1}}{\sqrt {4 e^{-2 a K[1]} (-c_1) a^2-4 b \sin (K[1]) a+e^{-2 a K[1]} (-c_1)+2 b \cos (K[1])}}dK[1]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\sqrt {4 a^2+1}}{\sqrt {4 e^{-2 a K[1]} c_1 a^2-4 b \sin (K[1]) a+e^{-2 a K[1]} c_1+2 b \cos (K[1])}}dK[1]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\sqrt {4 a^2+1}}{\sqrt {4 e^{-2 a K[2]} (-c_1) a^2-4 b \sin (K[2]) a+e^{-2 a K[2]} (-c_1)+2 b \cos (K[2])}}dK[2]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\sqrt {4 a^2+1}}{\sqrt {4 e^{-2 a K[2]} c_1 a^2-4 b \sin (K[2]) a+e^{-2 a K[2]} c_1+2 b \cos (K[2])}}dK[2]\&\right ][x+c_2] \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*Derivative(y(x), x)**2 + b*sin(y(x)) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(-(b*sin(y(x)) + Derivative(y(x), (x, 2)))/a) + Derivative(