23.4.54 problem 54

Internal problem ID [6356]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 54
Date solved : Tuesday, September 30, 2025 at 02:52:26 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

\begin{align*} a {y^{\prime }}^{3}+y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.013 (sec). Leaf size: 40
ode:=a*diff(y(x),x)^3+diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (c_1 +x \right ) \sqrt {2}}{\sqrt {a \left (c_1 +x \right )}}+c_2 \\ y &= -\frac {\left (c_1 +x \right ) \sqrt {2}}{\sqrt {a \left (c_1 +x \right )}}+c_2 \\ \end{align*}
Mathematica. Time used: 0.203 (sec). Leaf size: 50
ode=a*D[y[x],x]^3 + D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_2-\frac {\sqrt {2 a x-2 c_1}}{a}\\ y(x)&\to \frac {\sqrt {2 a x-2 c_1}}{a}+c_2 \end{align*}
Sympy. Time used: 27.429 (sec). Leaf size: 316
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a*Derivative(y(x), x)**3 + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} - \frac {\sqrt {2} \left (\begin {cases} - \frac {2 C_{1} \sqrt {- \frac {1}{C_{1} - a x}}}{a} + 2 x \sqrt {- \frac {1}{C_{1} - a x}} & \text {for}\: a \neq 0 \\x \sqrt {- \frac {1}{C_{1}}} & \text {otherwise} \end {cases}\right )}{2}, \ y{\left (x \right )} = C_{1} + \frac {\sqrt {2} \left (\begin {cases} - \frac {2 C_{1} \sqrt {- \frac {1}{C_{1} - a x}}}{a} + 2 x \sqrt {- \frac {1}{C_{1} - a x}} & \text {for}\: a \neq 0 \\x \sqrt {- \frac {1}{C_{1}}} & \text {otherwise} \end {cases}\right )}{2}, \ y{\left (x \right )} = C_{1} - \frac {\sqrt {2} \left (\begin {cases} - \frac {2 C_{1} \sqrt {- \frac {1}{C_{1} - a x}}}{a} + 2 x \sqrt {- \frac {1}{C_{1} - a x}} & \text {for}\: a \neq 0 \\x \sqrt {- \frac {1}{C_{1}}} & \text {otherwise} \end {cases}\right )}{2}, \ y{\left (x \right )} = C_{1} + \frac {\sqrt {2} \left (\begin {cases} - \frac {2 C_{1} \sqrt {- \frac {1}{C_{1} - a x}}}{a} + 2 x \sqrt {- \frac {1}{C_{1} - a x}} & \text {for}\: a \neq 0 \\x \sqrt {- \frac {1}{C_{1}}} & \text {otherwise} \end {cases}\right )}{2}, \ y{\left (x \right )} = C_{1} - \frac {\sqrt {2} \left (\begin {cases} - \frac {2 C_{1} \sqrt {- \frac {1}{C_{1} - a x}}}{a} + 2 x \sqrt {- \frac {1}{C_{1} - a x}} & \text {for}\: a \neq 0 \\x \sqrt {- \frac {1}{C_{1}}} & \text {otherwise} \end {cases}\right )}{2}, \ y{\left (x \right )} = C_{1} + \frac {\sqrt {2} \left (\begin {cases} - \frac {2 C_{1} \sqrt {- \frac {1}{C_{1} - a x}}}{a} + 2 x \sqrt {- \frac {1}{C_{1} - a x}} & \text {for}\: a \neq 0 \\x \sqrt {- \frac {1}{C_{1}}} & \text {otherwise} \end {cases}\right )}{2}\right ] \]