23.4.62 problem 62

Internal problem ID [6364]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 62
Date solved : Friday, October 03, 2025 at 02:05:26 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }&=a \sqrt {b y^{2}+{y^{\prime }}^{2}} \end{align*}
Maple. Time used: 0.165 (sec). Leaf size: 41
ode:=diff(diff(y(x),x),x) = a*(b*y(x)^2+diff(y(x),x)^2)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= {\mathrm e}^{\int \operatorname {RootOf}\left (x -\int _{}^{\textit {\_Z}}-\frac {1}{-a \sqrt {\textit {\_f}^{2}+b}+\textit {\_f}^{2}}d \textit {\_f} +c_1 \right )d x +c_2} \\ \end{align*}
Mathematica. Time used: 0.201 (sec). Leaf size: 76
ode=D[y[x],{x,2}] == a*Sqrt[b*y[x]^2 + D[y[x],x]^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}\frac {1}{\text {InverseFunction}\left [\int \frac {\text {$\#$1}}{K[1] \left (\frac {\text {$\#$1}^2}{K[1]^2}-a \sqrt {\frac {\text {$\#$1}^2}{K[1]^2}+b}\right )}d\frac {\text {$\#$1}}{K[1]}\&\right ][c_1-\log (K[1])]}dK[1]=x-c_2,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(-a*sqrt(b*y(x)**2 + Derivative(y(x), x)**2) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(-b*y(x)**2 + Derivative(y(x), (x, 2))**2/a**2) + Derivativ