Internal
problem
ID
[6369]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
67
Date
solved
:
Friday, October 03, 2025 at 02:05:35 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]
ode:=diff(diff(y(x),x),x) = a*(b+c*x+y(x))*(1+diff(y(x),x)^2)^(3/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == a*(b + c*x + y[x])*(1 + D[y[x],x]^2)^(3/2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") y = Function("y") ode = Eq(-a*(Derivative(y(x), x)**2 + 1)**(3/2)*(b + c*x + y(x)) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -sqrt(-(-b**2/(b**2 + 2*b*c*x + 2*b*y(x) + c**2*x**2 + 2*c*x*y(x