23.4.80 problem 80

Internal problem ID [6382]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 80
Date solved : Tuesday, September 30, 2025 at 02:54:54 PM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

\begin{align*} a \,x^{m} y^{n}+2 y^{\prime }+x y^{\prime \prime }&=0 \end{align*}
Maple
ode:=a*x^m*y(x)^n+2*diff(y(x),x)+x*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=a*x^m*y[x]^n + 2*D[y[x],x] + x*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
m = symbols("m") 
n = symbols("n") 
y = Function("y") 
ode = Eq(a*x**m*y(x)**n + x*Derivative(y(x), (x, 2)) + 2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE a*x**m*y(x)**n/2 + x*Derivative(y(x), (x, 2))/2 + Derivative(y(x