23.4.100 problem 100

Internal problem ID [6402]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 100
Date solved : Friday, October 03, 2025 at 02:05:38 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} a \left (-y+x y^{\prime }\right )^{2}+x^{2} y^{\prime \prime }&=b \,x^{2} \end{align*}
Maple. Time used: 0.032 (sec). Leaf size: 75
ode:=a*(-y(x)+x*diff(y(x),x))^2+x^2*diff(diff(y(x),x),x) = b*x^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (-\sqrt {-a b}\, \int \frac {\operatorname {BesselY}\left (1, \sqrt {-a b}\, x \right ) c_1 +\operatorname {BesselJ}\left (1, \sqrt {-a b}\, x \right )}{x \left (c_1 \operatorname {BesselY}\left (0, \sqrt {-a b}\, x \right )+\operatorname {BesselJ}\left (0, \sqrt {-a b}\, x \right )\right )}d x +c_2 a \right ) x}{a} \]
Mathematica. Time used: 120.16 (sec). Leaf size: 118
ode=a*(-y[x] + x*D[y[x],x])^2 + x^2*D[y[x],{x,2}] == b*x^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x \left (\int _1^x\frac {i \sqrt {b} \left (\operatorname {BesselY}\left (1,-i \sqrt {a} \sqrt {b} K[1]\right )-\operatorname {BesselJ}\left (1,i \sqrt {a} \sqrt {b} K[1]\right ) c_1\right )}{\sqrt {a} \left (\operatorname {BesselY}\left (0,-i \sqrt {a} \sqrt {b} K[1]\right )+\operatorname {BesselJ}\left (0,i \sqrt {a} \sqrt {b} K[1]\right ) c_1\right ) K[1]}dK[1]+c_2\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*(x*Derivative(y(x), x) - y(x))**2 - b*x**2 + x**2*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - y(x)/x - sqrt(a*b - a*Derivative(y(x), (x,