Internal
problem
ID
[6405]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
103
Date
solved
:
Friday, October 03, 2025 at 02:05:39 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x) = (b*y(x)^2+a*x^2*diff(y(x),x)^2)^(1/2); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}] == Sqrt[b*y[x]^2 + a*x^2*D[y[x],x]^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - sqrt(a*x**2*Derivative(y(x), x)**2 + b*y(x)**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - sqrt((-b*y(x)**2 + x**4*Derivative(y(x), (