Internal
problem
ID
[6421]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
119
Date
solved
:
Tuesday, September 30, 2025 at 02:56:29 PM
CAS
classification
:
[[_2nd_order, _quadrature]]
ode:=(c*x^2+2*b*x+a)^(3/2)*diff(diff(y(x),x),x) = f(x/(c*x^2+2*b*x+a)^(1/2)); dsolve(ode,y(x), singsol=all);
ode=(a + 2*b*x + c*x^2)^(3/2)*D[y[x],{x,2}] == f[x/Sqrt[a + 2*b*x + c*x^2]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") y = Function("y") ode = Eq((a + 2*b*x + c*x**2)**(3/2)*Derivative(y(x), (x, 2)) - f(x/sqrt(a + 2*b*x + c*x**2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)