23.4.172 problem 172

Internal problem ID [6474]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 172
Date solved : Tuesday, September 30, 2025 at 03:01:41 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} 1+{y^{\prime }}^{2}+2 y y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.079 (sec). Leaf size: 89
ode:=1+diff(y(x),x)^2+2*y(x)*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} -\sqrt {y \left (c_1 -y\right )}-\frac {c_1 \arctan \left (\frac {-2 y+c_1}{2 \sqrt {y \left (c_1 -y\right )}}\right )}{2}-x -c_2 &= 0 \\ \sqrt {y \left (c_1 -y\right )}+\frac {c_1 \arctan \left (\frac {-2 y+c_1}{2 \sqrt {y \left (c_1 -y\right )}}\right )}{2}-x -c_2 &= 0 \\ \end{align*}
Mathematica. Time used: 0.467 (sec). Leaf size: 397
ode=1 + D[y[x],x]^2 + 2*y[x]*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {InverseFunction}\left [-e^{2 c_1} \arctan \left (\frac {\sqrt {-\text {$\#$1}+e^{2 c_1}}}{\sqrt {\text {$\#$1}}}\right )-\sqrt {\text {$\#$1}} \sqrt {-\text {$\#$1}+e^{2 c_1}}\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [e^{2 c_1} \arctan \left (\frac {\sqrt {-\text {$\#$1}+e^{2 c_1}}}{\sqrt {\text {$\#$1}}}\right )+\sqrt {\text {$\#$1}} \sqrt {-\text {$\#$1}+e^{2 c_1}}\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [-e^{2 (-c_1)} \arctan \left (\frac {\sqrt {-\text {$\#$1}+e^{2 (-c_1)}}}{\sqrt {\text {$\#$1}}}\right )-\sqrt {\text {$\#$1}} \sqrt {-\text {$\#$1}+e^{2 (-c_1)}}\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [e^{2 (-c_1)} \arctan \left (\frac {\sqrt {-\text {$\#$1}+e^{2 (-c_1)}}}{\sqrt {\text {$\#$1}}}\right )+\sqrt {\text {$\#$1}} \sqrt {-\text {$\#$1}+e^{2 (-c_1)}}\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [-e^{2 c_1} \arctan \left (\frac {\sqrt {-\text {$\#$1}+e^{2 c_1}}}{\sqrt {\text {$\#$1}}}\right )-\sqrt {\text {$\#$1}} \sqrt {-\text {$\#$1}+e^{2 c_1}}\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [e^{2 c_1} \arctan \left (\frac {\sqrt {-\text {$\#$1}+e^{2 c_1}}}{\sqrt {\text {$\#$1}}}\right )+\sqrt {\text {$\#$1}} \sqrt {-\text {$\#$1}+e^{2 c_1}}\&\right ][x+c_2] \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x)*Derivative(y(x), (x, 2)) + Derivative(y(x), x)**2 + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(-2*y(x)*Derivative(y(x), (x, 2)) - 1) + Derivative(y(x), x