23.4.174 problem 174

Internal problem ID [6476]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 174
Date solved : Tuesday, September 30, 2025 at 03:01:44 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 2 y y^{\prime \prime }&=8 y^{3}+{y^{\prime }}^{2} \end{align*}
Maple. Time used: 0.014 (sec). Leaf size: 57
ode:=2*y(x)*diff(diff(y(x),x),x) = 8*y(x)^3+diff(y(x),x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ \int _{}^{y}\frac {1}{\sqrt {\textit {\_a} \left (4 \textit {\_a}^{2}+c_1 \right )}}d \textit {\_a} -x -c_2 &= 0 \\ -\int _{}^{y}\frac {1}{\sqrt {\textit {\_a} \left (4 \textit {\_a}^{2}+c_1 \right )}}d \textit {\_a} -x -c_2 &= 0 \\ \end{align*}
Mathematica. Time used: 0.871 (sec). Leaf size: 415
ode=2*y[x]*D[y[x],{x,2}] == 8*y[x]^3 + D[y[x],x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {InverseFunction}\left [-\frac {2 \sqrt {\text {$\#$1}} \sqrt {1+\frac {4 \text {$\#$1}^2}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-\frac {4 \text {$\#$1}^2}{c_1}\right )}{\sqrt {4 \text {$\#$1}^2+c_1}}\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1+\frac {4 \text {$\#$1}^2}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-\frac {4 \text {$\#$1}^2}{c_1}\right )}{\sqrt {4 \text {$\#$1}^2+c_1}}\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [-\frac {2 \sqrt {\text {$\#$1}} \sqrt {1-\frac {4 \text {$\#$1}^2}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\frac {-4 \text {$\#$1}^2}{-c_1}\right )}{\sqrt {4 \text {$\#$1}^2-c_1}}\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1-\frac {4 \text {$\#$1}^2}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\frac {-4 \text {$\#$1}^2}{-c_1}\right )}{\sqrt {4 \text {$\#$1}^2-c_1}}\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [-\frac {2 \sqrt {\text {$\#$1}} \sqrt {1+\frac {4 \text {$\#$1}^2}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-\frac {4 \text {$\#$1}^2}{c_1}\right )}{\sqrt {4 \text {$\#$1}^2+c_1}}\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1+\frac {4 \text {$\#$1}^2}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-\frac {4 \text {$\#$1}^2}{c_1}\right )}{\sqrt {4 \text {$\#$1}^2+c_1}}\&\right ][x+c_2] \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-8*y(x)**3 + 2*y(x)*Derivative(y(x), (x, 2)) - Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(2)*sqrt((-4*y(x)**2 + Derivative(y(x), (x, 2)))*y(x)) + De