23.4.191 problem 191

Internal problem ID [6493]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 191
Date solved : Tuesday, September 30, 2025 at 03:02:02 PM
CAS classification : [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} 3 y y^{\prime \prime }&=5 {y^{\prime }}^{2} \end{align*}
Maple. Time used: 0.008 (sec). Leaf size: 21
ode:=3*y(x)*diff(diff(y(x),x),x) = 5*diff(y(x),x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ -\frac {3}{2 y^{{2}/{3}}}-c_1 x -c_2 &= 0 \\ \end{align*}
Mathematica. Time used: 0.112 (sec). Leaf size: 25
ode=3*y[x]*D[y[x],{x,2}] == 5*D[y[x],x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_2}{(2 x+3 c_1){}^{3/2}}\\ y(x)&\to 0 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*y(x)*Derivative(y(x), (x, 2)) - 5*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(15)*sqrt(y(x)*Derivative(y(x), (x, 2)))/5 + Derivative(y(x