Internal
problem
ID
[6532]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
230
Date
solved
:
Friday, October 03, 2025 at 02:09:27 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]
ode:=x*(1+x)^2*y(x)*diff(diff(y(x),x),x) = a*(x+2)*y(x)^2-2*(x^2+1)*y(x)*diff(y(x),x)+x*(1+x)^2*diff(y(x),x)^2; dsolve(ode,y(x), singsol=all);
ode=x*(1 + x)^2*y[x]*D[y[x],{x,2}] == a*(2 + x)*y[x]^2 - 2*(1 + x^2)*y[x]*D[y[x],x] + x*(1 + x)^2*D[y[x],x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-a*(x + 2)*y(x)**2 + x*(x + 1)**2*y(x)*Derivative(y(x), (x, 2)) - x*(x + 1)**2*Derivative(y(x), x)**2 + (2*x**2 + 2)*y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*y(x) + sqrt((-a*x**4*y(x) - 4*a*x**3