Internal
problem
ID
[6534]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
232
Date
solved
:
Tuesday, September 30, 2025 at 03:02:47 PM
CAS
classification
:
[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=(a^2+x^2)^(1/2)*(b*diff(y(x),x)^2+y(x)*diff(diff(y(x),x),x)) = y(x)*diff(y(x),x); dsolve(ode,y(x), singsol=all);
ode=Sqrt[a^2 + x^2]*(b*D[y[x],x]^2 + y[x]*D[y[x],{x,2}]) == y[x]*D[y[x],x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(sqrt(a**2 + x**2)*(b*Derivative(y(x), x)**2 + y(x)*Derivative(y(x), (x, 2))) - y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt((-4*a**2*b*Derivative(y(x), (x, 2))