23.4.236 problem 236

Internal problem ID [6538]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 236
Date solved : Tuesday, September 30, 2025 at 03:02:50 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} y^{2} y^{\prime \prime }&=a \end{align*}
Maple. Time used: 0.032 (sec). Leaf size: 257
ode:=y(x)^2*diff(diff(y(x),x),x) = a; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {c_1 \left ({\mathrm e}^{-\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{4} a^{2}-2 \textit {\_Z} \,c_1^{3} a \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{2}-2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_2 -2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) x \right )} c_1^{2} a^{2}+{\mathrm e}^{\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{4} a^{2}-2 \textit {\_Z} \,c_1^{3} a \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{2}-2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_2 -2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) x \right )}+2 a c_1 \right )}{2} \\ y &= \frac {c_1 \left ({\mathrm e}^{-\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{4} a^{2}-2 \textit {\_Z} \,c_1^{3} a \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{2}+2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_2 +2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) x \right )} c_1^{2} a^{2}+{\mathrm e}^{\operatorname {RootOf}\left (\operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{4} a^{2}-2 \textit {\_Z} \,c_1^{3} a \,{\mathrm e}^{\textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{2}+2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_2 +2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) x \right )}+2 a c_1 \right )}{2} \\ \end{align*}
Mathematica. Time used: 0.097 (sec). Leaf size: 65
ode=y[x]^2*D[y[x],{x,2}] == a; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\left (\frac {2 a \text {arctanh}\left (\frac {\sqrt {-\frac {2 a}{y(x)}+c_1}}{\sqrt {c_1}}\right )}{c_1{}^{3/2}}+\frac {y(x) \sqrt {-\frac {2 a}{y(x)}+c_1}}{c_1}\right ){}^2=(x+c_2){}^2,y(x)\right ] \]
Sympy. Time used: 1.275 (sec). Leaf size: 357
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a + y(x)**2*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \begin {cases} \sqrt {2} C_{1} \sqrt {a} \sqrt {\frac {C_{1} y{\left (x \right )}}{2 a} - 1} \sqrt {y{\left (x \right )}} + \frac {2 a \operatorname {acosh}{\left (\frac {\sqrt {2} \sqrt {C_{1}} \sqrt {y{\left (x \right )}}}{2 \sqrt {a}} \right )}}{C_{1}^{\frac {3}{2}}} & \text {for}\: \left |{\frac {C_{1} y{\left (x \right )}}{a}}\right | > 2 \\\frac {\sqrt {2} i C_{1} \sqrt {a} \sqrt {y{\left (x \right )}}}{\sqrt {- \frac {C_{1} y{\left (x \right )}}{2 a} + 1}} - \frac {\sqrt {2} i y^{\frac {3}{2}}{\left (x \right )}}{2 \sqrt {a} \sqrt {- \frac {C_{1} y{\left (x \right )}}{2 a} + 1}} - \frac {2 i a \operatorname {asin}{\left (\frac {\sqrt {2} \sqrt {C_{1}} \sqrt {y{\left (x \right )}}}{2 \sqrt {a}} \right )}}{C_{1}^{\frac {3}{2}}} & \text {otherwise} \end {cases} = C_{1} + x, \ \begin {cases} \sqrt {2} C_{1} \sqrt {a} \sqrt {\frac {C_{1} y{\left (x \right )}}{2 a} - 1} \sqrt {y{\left (x \right )}} + \frac {2 a \operatorname {acosh}{\left (\frac {\sqrt {2} \sqrt {C_{1}} \sqrt {y{\left (x \right )}}}{2 \sqrt {a}} \right )}}{C_{1}^{\frac {3}{2}}} & \text {for}\: \left |{\frac {C_{1} y{\left (x \right )}}{a}}\right | > 2 \\\frac {\sqrt {2} i C_{1} \sqrt {a} \sqrt {y{\left (x \right )}}}{\sqrt {- \frac {C_{1} y{\left (x \right )}}{2 a} + 1}} - \frac {\sqrt {2} i y^{\frac {3}{2}}{\left (x \right )}}{2 \sqrt {a} \sqrt {- \frac {C_{1} y{\left (x \right )}}{2 a} + 1}} - \frac {2 i a \operatorname {asin}{\left (\frac {\sqrt {2} \sqrt {C_{1}} \sqrt {y{\left (x \right )}}}{2 \sqrt {a}} \right )}}{C_{1}^{\frac {3}{2}}} & \text {otherwise} \end {cases} = C_{1} - x\right ] \]