Internal
problem
ID
[6546]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
244
Date
solved
:
Friday, October 03, 2025 at 02:09:29 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]
ode:=(x+y(x)^2)*diff(diff(y(x),x),x) = 2*(x-y(x)^2)*diff(y(x),x)^3-diff(y(x),x)*(1+4*y(x)*diff(y(x),x)); dsolve(ode,y(x), singsol=all);
ode=(x + y[x]^2)*D[y[x],{x,2}] == 2*(x - y[x]^2)*D[y[x],x]^3 - D[y[x],x]*(1 + 4*y[x]*D[y[x],x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x + y(x)**2)*Derivative(y(x), (x, 2)) - (2*x - 2*y(x)**2)*Derivative(y(x), x)**3 + (4*y(x)*Derivative(y(x), x) + 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out