Internal
problem
ID
[6550]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
248
Date
solved
:
Friday, October 03, 2025 at 02:09:29 AM
CAS
classification
:
[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=2*(1-y(x))*y(x)*diff(diff(y(x),x),x) = f(x)*(1-y(x))*y(x)*diff(y(x),x)+(1-2*y(x))*diff(y(x),x)^2; dsolve(ode,y(x), singsol=all);
ode=2*(1 - y[x])*y[x]*D[y[x],{x,2}] == f[x]*(1 - y[x])*y[x]*D[y[x],x] + (1 - 2*y[x])*D[y[x],x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(1 - 2*y(x))*Derivative(y(x), x)**2 - (1 - y(x))*f(x)*y(x)*Derivative(y(x), x) + (2 - 2*y(x))*y(x)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -(sqrt((y(x) - 1)*(f(x)**2*y(x)**2 - f(x)**2*y(x) + 16*y(x)*Deri