23.4.259 problem 259

Internal problem ID [6561]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 259
Date solved : Friday, October 03, 2025 at 02:09:31 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x +y\right ) \left (-y+x y^{\prime }\right )^{3}+x^{3} y^{2} y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.054 (sec). Leaf size: 170
ode:=(x+y(x))*(-y(x)+x*diff(y(x),x))^3+x^3*y(x)^2*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= \operatorname {RootOf}\left (-2 \ln \left (x \right )-\int _{}^{\textit {\_Z}}\frac {i \operatorname {BesselY}\left (i \sqrt {3}, 2 \sqrt {\textit {\_f}}\right ) \sqrt {3}\, c_1 \sqrt {\textit {\_f}}+i \sqrt {3}\, \operatorname {BesselJ}\left (i \sqrt {3}, 2 \sqrt {\textit {\_f}}\right ) \sqrt {\textit {\_f}}+\operatorname {BesselY}\left (i \sqrt {3}, 2 \sqrt {\textit {\_f}}\right ) c_1 \sqrt {\textit {\_f}}-2 c_1 \operatorname {BesselY}\left (1+i \sqrt {3}, 2 \sqrt {\textit {\_f}}\right ) \textit {\_f} +\operatorname {BesselJ}\left (i \sqrt {3}, 2 \sqrt {\textit {\_f}}\right ) \sqrt {\textit {\_f}}-2 \operatorname {BesselJ}\left (1+i \sqrt {3}, 2 \sqrt {\textit {\_f}}\right ) \textit {\_f}}{\textit {\_f}^{{3}/{2}} \left (\operatorname {BesselY}\left (i \sqrt {3}, 2 \sqrt {\textit {\_f}}\right ) c_1 +\operatorname {BesselJ}\left (i \sqrt {3}, 2 \sqrt {\textit {\_f}}\right )\right )}d \textit {\_f} +2 c_2 \right ) x \\ \end{align*}
Mathematica. Time used: 32.172 (sec). Leaf size: 248
ode=(x + y[x])*(-y[x] + x*D[y[x],x])^3 + x^3*y[x]^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [-\int _1^{\frac {y(x)}{x}}\frac {i \sqrt {3} \sqrt {K[2]} \operatorname {BesselJ}\left (i \sqrt {3},2 \sqrt {K[2]}\right )+\sqrt {K[2]} \operatorname {BesselJ}\left (i \sqrt {3},2 \sqrt {K[2]}\right )-2 \operatorname {BesselJ}\left (1+i \sqrt {3},2 \sqrt {K[2]}\right ) K[2]-2 \operatorname {BesselY}\left (1+i \sqrt {3},2 \sqrt {K[2]}\right ) c_1 K[2]+i \sqrt {3} \operatorname {BesselY}\left (i \sqrt {3},2 \sqrt {K[2]}\right ) c_1 \sqrt {K[2]}+\operatorname {BesselY}\left (i \sqrt {3},2 \sqrt {K[2]}\right ) c_1 \sqrt {K[2]}}{\left (\operatorname {BesselJ}\left (i \sqrt {3},2 \sqrt {K[2]}\right )+\operatorname {BesselY}\left (i \sqrt {3},2 \sqrt {K[2]}\right ) c_1\right ) K[2]^{3/2}}dK[2]-2 \log (x)+2 c_2=0,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*y(x)**2*Derivative(y(x), (x, 2)) + (x + y(x))*(x*Derivative(y(x), x) - y(x))**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -(-(x**3*y(x)**2*Derivative(y(x), (x, 2)) - x*y(x)**3 - y(x)**4)