Internal
problem
ID
[6565]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
263
Date
solved
:
Tuesday, September 30, 2025 at 03:04:33 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
ode:=(-(1-y(x))*(a-y(x))+(1-y(x))*y(x)+(a-y(x))*y(x))*diff(y(x),x)^2+2*(1-y(x))*(a-y(x))*y(x)*diff(diff(y(x),x),x) = a3*(1-y(x))^2*(a-y(x))^2+a1*(1-y(x))^2*y(x)^2+a2*(a-y(x))^2*y(x)^2+a0*(a-y(x))^2*y(x)^2*(1-y(x)^2); dsolve(ode,y(x), singsol=all);
ode=(-((1 - y[x])*(a - y[x])) + (1 - y[x])*y[x] + (a - y[x])*y[x])*D[y[x],x]^2 + 2*(1 - y[x])*(a - y[x])*y[x]*D[y[x],{x,2}] == a3*(1 - y[x])^2*(a - y[x])^2 + a1*(1 - y[x])^2*y[x]^2 + a2*(a - y[x])^2*y[x]^2 + a0*(a - y[x])^2*y[x]^2*(1 - y[x]^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") a = symbols("a") a0 = symbols("a0") a1 = symbols("a1") a2 = symbols("a2") a3 = symbols("a3") y = Function("y") ode = Eq(-a0*(1 - y(x)**2)*(a - y(x))**2*y(x)**2 - a1*(1 - y(x))**2*y(x)**2 - a2*(a - y(x))**2*y(x)**2 - a3*(1 - y(x))**2*(a - y(x))**2 + (2 - 2*y(x))*(a - y(x))*y(x)*Derivative(y(x), (x, 2)) + ((1 - y(x))*y(x) + (a - y(x))*(y(x) - 1) + (a - y(x))*y(x))*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -sqrt((-a**2*a0*y(x)**4 + a**2*a0*y(x)**2 + a**2*a2*y(x)**2 + a*