23.4.266 problem 266

Internal problem ID [6568]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 266
Date solved : Tuesday, September 30, 2025 at 03:07:14 PM
CAS classification : unknown

\begin{align*} 2 \left (1-x \right ) x \left (1-y\right ) \left (x -y\right ) y y^{\prime \prime }&=f \left (x \right ) \left (\left (1-y\right ) \left (x -y\right ) y\right )^{{3}/{2}}-y^{2} \left (1-y^{2}\right )+2 \left (1-y\right ) y \left (x^{2}+y-2 x y\right ) y^{\prime }+\left (1-x \right ) x \left (x -2 y-2 x y+3 y^{2}\right ) {y^{\prime }}^{2} \end{align*}
Maple
ode:=2*(1-x)*x*(1-y(x))*(x-y(x))*y(x)*diff(diff(y(x),x),x) = f(x)*((1-y(x))*(x-y(x))*y(x))^(3/2)-y(x)^2*(1-y(x)^2)+2*(1-y(x))*y(x)*(x^2+y(x)-2*x*y(x))*diff(y(x),x)+(1-x)*x*(x-2*y(x)-2*x*y(x)+3*y(x)^2)*diff(y(x),x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=2*(1 - x)*x*(1 - y[x])*(x - y[x])*y[x]*D[y[x],{x,2}] == f[x]*((1 - y[x])*(x - y[x])*y[x])^(3/2) - y[x]^2*(1 - y[x]^2) + 2*(1 - y[x])*y[x]*(x^2 + y[x] - 2*x*y[x])*D[y[x],x] + (1 - x)*x*(x - 2*y[x] - 2*x*y[x] + 3*y[x]^2)*D[y[x],x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Timed out

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*(1 - x)*(-2*x*y(x) + x + 3*y(x)**2 - 2*y(x))*Derivative(y(x), x)**2 + x*(1 - y(x))*(2 - 2*x)*(x - y(x))*y(x)*Derivative(y(x), (x, 2)) - ((1 - y(x))*(x - y(x))*y(x))**(3/2)*f(x) + (1 - y(x)**2)*y(x)**2 - (2 - 2*y(x))*(x**2 - 2*x*y(x) + y(x))*y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out