Internal
problem
ID
[6568]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
266
Date
solved
:
Tuesday, September 30, 2025 at 03:07:14 PM
CAS
classification
:
unknown
ode:=2*(1-x)*x*(1-y(x))*(x-y(x))*y(x)*diff(diff(y(x),x),x) = f(x)*((1-y(x))*(x-y(x))*y(x))^(3/2)-y(x)^2*(1-y(x)^2)+2*(1-y(x))*y(x)*(x^2+y(x)-2*x*y(x))*diff(y(x),x)+(1-x)*x*(x-2*y(x)-2*x*y(x)+3*y(x)^2)*diff(y(x),x)^2; dsolve(ode,y(x), singsol=all);
ode=2*(1 - x)*x*(1 - y[x])*(x - y[x])*y[x]*D[y[x],{x,2}] == f[x]*((1 - y[x])*(x - y[x])*y[x])^(3/2) - y[x]^2*(1 - y[x]^2) + 2*(1 - y[x])*y[x]*(x^2 + y[x] - 2*x*y[x])*D[y[x],x] + (1 - x)*x*(x - 2*y[x] - 2*x*y[x] + 3*y[x]^2)*D[y[x],x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Timed out
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*(1 - x)*(-2*x*y(x) + x + 3*y(x)**2 - 2*y(x))*Derivative(y(x), x)**2 + x*(1 - y(x))*(2 - 2*x)*(x - y(x))*y(x)*Derivative(y(x), (x, 2)) - ((1 - y(x))*(x - y(x))*y(x))**(3/2)*f(x) + (1 - y(x)**2)*y(x)**2 - (2 - 2*y(x))*(x**2 - 2*x*y(x) + y(x))*y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out