Internal
problem
ID
[6570]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
268
Date
solved
:
Tuesday, September 30, 2025 at 03:07:16 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
ode:=y(x)*(1+a^2-2*a^2*y(x)^2)+b*((1-y(x)^2)*(1-a^2*y(x)^2))^(1/2)*diff(y(x),x)^2+(1-y(x)^2)*(1-a^2*y(x)^2)*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=y[x]*(1 + a^2 - 2*a^2*y[x]^2) + b*Sqrt[(1 - y[x]^2)*(1 - a^2*y[x]^2)]*D[y[x],x]^2 + (1 - y[x]^2)*(1 - a^2*y[x]^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(b*sqrt((1 - y(x)**2)*(-a**2*y(x)**2 + 1))*Derivative(y(x), x)**2 + (1 - y(x)**2)*(-a**2*y(x)**2 + 1)*Derivative(y(x), (x, 2)) + (-2*a**2*y(x)**2 + a**2 + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE sqrt(-(a**2*y(x)**4*Derivative(y(x), (x, 2)) - 2*a**2*y(x)**3 -