23.4.270 problem 270

Internal problem ID [6572]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 270
Date solved : Friday, October 03, 2025 at 02:09:32 AM
CAS classification : [NONE]

\begin{align*} A y+\left (a +2 b x +c \,x^{2}+y^{2}\right )^{2} y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.045 (sec). Leaf size: 336
ode:=A*y(x)+(a+2*b*x+c*x^2+y(x)^2)^2*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \operatorname {RootOf}\left (c \int _{}^{\textit {\_Z}}\frac {\sqrt {\left (\textit {\_f}^{2}+1\right ) \left (-\textit {\_f}^{4} a c +\textit {\_f}^{4} b^{2}+c_1 \,\textit {\_f}^{2} c^{2}-\textit {\_f}^{2} a c +\textit {\_f}^{2} b^{2}+c_1 \,c^{2}+A \right )}}{-\textit {\_f}^{4} a c +\textit {\_f}^{4} b^{2}+c_1 \,\textit {\_f}^{2} c^{2}-\textit {\_f}^{2} a c +\textit {\_f}^{2} b^{2}+c_1 \,c^{2}+A}d \textit {\_f} \sqrt {a c -b^{2}}-c \arctan \left (\frac {c x +b}{\sqrt {a c -b^{2}}}\right )+c_2 \sqrt {a c -b^{2}}\right ) \sqrt {c \,x^{2}+2 b x +a} \\ y &= \operatorname {RootOf}\left (-c \int _{}^{\textit {\_Z}}\frac {\sqrt {\left (\textit {\_f}^{2}+1\right ) \left (-\textit {\_f}^{4} a c +\textit {\_f}^{4} b^{2}+c_1 \,\textit {\_f}^{2} c^{2}-\textit {\_f}^{2} a c +\textit {\_f}^{2} b^{2}+c_1 \,c^{2}+A \right )}}{-\textit {\_f}^{4} a c +\textit {\_f}^{4} b^{2}+c_1 \,\textit {\_f}^{2} c^{2}-\textit {\_f}^{2} a c +\textit {\_f}^{2} b^{2}+c_1 \,c^{2}+A}d \textit {\_f} \sqrt {a c -b^{2}}-c \arctan \left (\frac {c x +b}{\sqrt {a c -b^{2}}}\right )+c_2 \sqrt {a c -b^{2}}\right ) \sqrt {c \,x^{2}+2 b x +a} \\ \end{align*}
Mathematica. Time used: 34.874 (sec). Leaf size: 260
ode=A*y[x] + (a + 2*b*x + c*x^2 + y[x]^2)^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [c \arctan \left (\frac {b+c x}{\sqrt {a c-b^2}}\right )+\sqrt {a c-b^2} \int _1^{\frac {y(x)}{\sqrt {a+x (2 b+c x)}}}\frac {c \left (K[2]^2+1\right )}{\sqrt {\left (K[2]^2+1\right ) \left (A+\left (K[2]^2+1\right ) \left (c_1 c^2+\left (b^2-a c\right ) K[2]^2\right )\right )}}dK[2]=c_2 \sqrt {a c-b^2},y(x)\right ]\\ \text {Solve}\left [c \arctan \left (\frac {b+c x}{\sqrt {a c-b^2}}\right )-\sqrt {a c-b^2} \int _1^{\frac {y(x)}{\sqrt {a+x (2 b+c x)}}}\frac {c \left (K[3]^2+1\right )}{\sqrt {\left (K[3]^2+1\right ) \left (A+\left (K[3]^2+1\right ) \left (c_1 c^2+\left (b^2-a c\right ) K[3]^2\right )\right )}}dK[3]=c_2 \sqrt {a c-b^2},y(x)\right ] \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
A = symbols("A") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(A*y(x) + (a + 2*b*x + c*x**2 + y(x)**2)**2*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : solve: Cannot solve A*y(x) + (a + 2*b*x + c*x**2 + y(x)**2)**2*Derivative(y(x)