23.4.285 problem 288

Internal problem ID [6587]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 288
Date solved : Tuesday, September 30, 2025 at 03:22:19 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{3}+\left (y^{2}+{y^{\prime }}^{2}\right ) y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.146 (sec). Leaf size: 163
ode:=y(x)^3+(y(x)^2+diff(y(x),x)^2)*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= \frac {\sqrt {c_1 +\tan \left (\sqrt {3}\, x \right )}\, {\mathrm e}^{\frac {\sqrt {3}\, \int \frac {\sqrt {\left (9 c_1^{2}+12\right ) \sec \left (\sqrt {3}\, x \right )^{2}+3 c_1^{2}+6 c_1 \tan \left (\sqrt {3}\, x \right )-3}}{c_1 +\tan \left (\sqrt {3}\, x \right )}d x}{6}+c_2}}{\left (\sec \left (\sqrt {3}\, x \right )^{2}\right )^{{1}/{4}}} \\ y &= \frac {\sqrt {c_1 +\tan \left (\sqrt {3}\, x \right )}\, {\mathrm e}^{-\frac {\sqrt {3}\, \int \frac {\sqrt {\left (9 c_1^{2}+12\right ) \sec \left (\sqrt {3}\, x \right )^{2}+3 c_1^{2}+6 c_1 \tan \left (\sqrt {3}\, x \right )-3}}{c_1 +\tan \left (\sqrt {3}\, x \right )}d x}{6}+c_2}}{\left (\sec \left (\sqrt {3}\, x \right )^{2}\right )^{{1}/{4}}} \\ \end{align*}
Mathematica. Time used: 37.655 (sec). Leaf size: 369
ode=y[x]^3 + (y[x]^2 + D[y[x],x]^2)*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_2 \exp \left (-\frac {\arctan \left (\frac {1+2 \text {InverseFunction}\left [\frac {\left (\sqrt {3}-i\right ) \arctan \left (\frac {\text {$\#$1}}{\sqrt {\frac {1}{2} \left (1-i \sqrt {3}\right )}}\right )}{\sqrt {6 \left (1-i \sqrt {3}\right )}}+\frac {\left (\sqrt {3}+i\right ) \arctan \left (\frac {\text {$\#$1}}{\sqrt {\frac {1}{2} \left (1+i \sqrt {3}\right )}}\right )}{\sqrt {6 \left (1+i \sqrt {3}\right )}}\&\right ][-x+c_1]{}^2}{\sqrt {3}}\right )}{2 \sqrt {3}}\right )}{\sqrt [4]{\text {InverseFunction}\left [\frac {\left (\sqrt {3}-i\right ) \arctan \left (\frac {\text {$\#$1}}{\sqrt {\frac {1}{2} \left (1-i \sqrt {3}\right )}}\right )}{\sqrt {6 \left (1-i \sqrt {3}\right )}}+\frac {\left (\sqrt {3}+i\right ) \arctan \left (\frac {\text {$\#$1}}{\sqrt {\frac {1}{2} \left (1+i \sqrt {3}\right )}}\right )}{\sqrt {6 \left (1+i \sqrt {3}\right )}}\&\right ][-x+c_1]{}^4+\text {InverseFunction}\left [\frac {\left (\sqrt {3}-i\right ) \arctan \left (\frac {\text {$\#$1}}{\sqrt {\frac {1}{2} \left (1-i \sqrt {3}\right )}}\right )}{\sqrt {6 \left (1-i \sqrt {3}\right )}}+\frac {\left (\sqrt {3}+i\right ) \arctan \left (\frac {\text {$\#$1}}{\sqrt {\frac {1}{2} \left (1+i \sqrt {3}\right )}}\right )}{\sqrt {6 \left (1+i \sqrt {3}\right )}}\&\right ][-x+c_1]{}^2+1}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((y(x)**2 + Derivative(y(x), x)**2)*Derivative(y(x), (x, 2)) + y(x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE sqrt(-(y(x) + Derivative(y(x), (x, 2)))/Derivative(y(x), (x, 2))