Internal
problem
ID
[6590]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
291
Date
solved
:
Tuesday, September 30, 2025 at 03:26:39 PM
CAS
classification
:
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]
ode:=h(x)+g(y(x))*diff(y(x),x)+f(diff(y(x),x))*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=h[x] + g[y[x]]*D[y[x],x] + f[D[y[x],x]]*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(f(Derivative(y(x), x))*Derivative(y(x), (x, 2)) + g(y(x))*Derivative(y(x), x) + h(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : multiple generators [_X0, f(_X0)] No algorithms are implemented to solve equat