Internal
problem
ID
[6603]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
304
Date
solved
:
Tuesday, September 30, 2025 at 03:27:25 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
ode:=diff(y(x),x)^2*(1-b^2*diff(y(x),x)^2)+2*b^2*y(x)*diff(y(x),x)^2*diff(diff(y(x),x),x)+(a^2-b^2*y(x)^2)*diff(diff(y(x),x),x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]^2*(1 - b^2*D[y[x],x]^2) + 2*b^2*y[x]*D[y[x],x]^2*D[y[x],{x,2}] + (a^2 - b^2*y[x]^2)*D[y[x],{x,2}]^2 == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
{}
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(2*b**2*y(x)*Derivative(y(x), x)**2*Derivative(y(x), (x, 2)) + (a**2 - b**2*y(x)**2)*Derivative(y(x), (x, 2))**2 + (-b**2*Derivative(y(x), x)**2 + 1)*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -sqrt(2)*sqrt(2*y(x)*Derivative(y(x), (x, 2)) + sqrt(4*a**2*b**2