23.4.303 problem 306

Internal problem ID [6605]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 306
Date solved : Tuesday, September 30, 2025 at 03:27:27 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} {y^{\prime \prime }}^{3}&=12 y^{\prime } \left (-2 y^{\prime }+x y^{\prime \prime }\right ) \end{align*}
Maple. Time used: 2.686 (sec). Leaf size: 174
ode:=diff(diff(y(x),x),x)^3 = 12*diff(y(x),x)*(-2*diff(y(x),x)+x*diff(diff(y(x),x),x)); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {x^{4}}{9}+c_1 \\ y &= c_1 \\ y &= \int \operatorname {RootOf}\left (-6 \ln \left (x \right )-\int _{}^{\textit {\_Z}}\frac {3 \textit {\_f} \sqrt {\frac {1}{\textit {\_f} \left (9 \textit {\_f} -4\right )}}\, 2^{{1}/{3}} \left (\left (3 \sqrt {\frac {1}{\textit {\_f} \left (9 \textit {\_f} -4\right )}}\, \textit {\_f} +1\right )^{2} \left (9 \textit {\_f} -4\right )^{4}\right )^{{1}/{3}}-2 \,2^{{2}/{3}} \left (\left (3 \sqrt {\frac {1}{\textit {\_f} \left (9 \textit {\_f} -4\right )}}\, \textit {\_f} +1\right ) \left (9 \textit {\_f} -4\right )^{2}\right )^{{1}/{3}}-2^{{1}/{3}} \left (\left (3 \sqrt {\frac {1}{\textit {\_f} \left (9 \textit {\_f} -4\right )}}\, \textit {\_f} +1\right )^{2} \left (9 \textit {\_f} -4\right )^{4}\right )^{{1}/{3}}+18 \textit {\_f} -8}{\textit {\_f} \left (9 \textit {\_f} -4\right )}d \textit {\_f} +6 c_1 \right ) x^{3}d x +c_2 \\ \end{align*}
Mathematica
ode=D[y[x],{x,2}]^3 == 12*D[y[x],x]*(-2*D[y[x],x] + x*D[y[x],{x,2}]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-12*(x*Derivative(y(x), (x, 2)) - 2*Derivative(y(x), x))*Derivative(y(x), x) + Derivative(y(x), (x, 2))**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out