23.5.25 problem 25

Internal problem ID [6634]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 5. THE EQUATION IS LINEAR AND OF ORDER GREATER THAN TWO, page 410
Problem number : 25
Date solved : Tuesday, September 30, 2025 at 03:50:24 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y+y^{\prime }-y^{\prime \prime }+y^{\prime \prime \prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 149
ode:=y(x)+diff(y(x),x)-diff(diff(y(x),x),x)+diff(diff(diff(y(x),x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\frac {\left (-2+\left (17+3 \sqrt {33}\right )^{{2}/{3}}+2 \left (17+3 \sqrt {33}\right )^{{1}/{3}}\right ) x}{6 \left (17+3 \sqrt {33}\right )^{{1}/{3}}}} \left (\sin \left (\frac {\sqrt {3}\, \left (\left (17+3 \sqrt {3}\, \sqrt {11}\right )^{{2}/{3}}+2\right ) x}{6 \left (17+3 \sqrt {3}\, \sqrt {11}\right )^{{1}/{3}}}\right ) c_2 +\cos \left (\frac {\sqrt {3}\, \left (\left (17+3 \sqrt {3}\, \sqrt {11}\right )^{{2}/{3}}+2\right ) x}{6 \left (17+3 \sqrt {3}\, \sqrt {11}\right )^{{1}/{3}}}\right ) c_3 \right )+{\mathrm e}^{-\frac {\left (\left (17+3 \sqrt {33}\right )^{{1}/{3}}+1\right ) \left (\left (17+3 \sqrt {33}\right )^{{1}/{3}}-2\right ) x}{3 \left (17+3 \sqrt {33}\right )^{{1}/{3}}}} c_1 \]
Mathematica. Time used: 0.002 (sec). Leaf size: 81
ode=y[x] + D[y[x],x] - D[y[x],{x,2}] + D[y[x],{x,3}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \exp \left (x \text {Root}\left [\text {$\#$1}^3-\text {$\#$1}^2+\text {$\#$1}+1\&,1\right ]\right )+c_2 \exp \left (x \text {Root}\left [\text {$\#$1}^3-\text {$\#$1}^2+\text {$\#$1}+1\&,2\right ]\right )+c_3 \exp \left (x \text {Root}\left [\text {$\#$1}^3-\text {$\#$1}^2+\text {$\#$1}+1\&,3\right ]\right ) \end{align*}
Sympy. Time used: 0.244 (sec). Leaf size: 175
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + Derivative(y(x), x) - Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{\frac {x \left (- \frac {2}{\sqrt [3]{17 + 3 \sqrt {33}}} + 2 + \sqrt [3]{17 + 3 \sqrt {33}}\right )}{6}} \sin {\left (\frac {\sqrt {3} x \left (\frac {2}{\sqrt [3]{17 + 3 \sqrt {33}}} + \sqrt [3]{17 + 3 \sqrt {33}}\right )}{6} \right )} + C_{2} e^{\frac {x \left (- \frac {2}{\sqrt [3]{17 + 3 \sqrt {33}}} + 2 + \sqrt [3]{17 + 3 \sqrt {33}}\right )}{6}} \cos {\left (\frac {\sqrt {3} x \left (\frac {2}{\sqrt [3]{17 + 3 \sqrt {33}}} + \sqrt [3]{17 + 3 \sqrt {33}}\right )}{6} \right )} + C_{3} e^{\frac {x \left (- \sqrt [3]{17 + 3 \sqrt {33}} + \frac {2}{\sqrt [3]{17 + 3 \sqrt {33}}} + 1\right )}{3}} \]