23.5.59 problem 59

Internal problem ID [6668]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 5. THE EQUATION IS LINEAR AND OF ORDER GREATER THAN TWO, page 410
Problem number : 59
Date solved : Tuesday, September 30, 2025 at 03:50:39 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }&=a y^{\prime \prime } \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=diff(diff(diff(y(x),x),x),x) = a*diff(diff(y(x),x),x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 x +c_3 \,{\mathrm e}^{a x} \]
Mathematica. Time used: 0.018 (sec). Leaf size: 23
ode=D[y[x],{x,3}] == a*D[y[x],{x,2}]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1 e^{a x}}{a^2}+c_3 x+c_2 \end{align*}
Sympy. Time used: 0.024 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x + C_{3} e^{a x} \]