Internal
problem
ID
[6670]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
5.
THE
EQUATION
IS
LINEAR
AND
OF
ORDER
GREATER
THAN
TWO,
page
410
Problem
number
:
61
Date
solved
:
Friday, October 03, 2025 at 02:09:38 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=-8*a*x*y(x)-2*(-4*x^2-2*a+1)*diff(y(x),x)-6*x*diff(diff(y(x),x),x)+diff(diff(diff(y(x),x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=-8*a*x*y[x] - 2*(1 - 2*a - 4*x^2)*D[y[x],x] - 6*x*D[y[x],{x,2}] + D[y[x],{x,3}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-8*a*x*y(x) - 6*x*Derivative(y(x), (x, 2)) - (-4*a - 8*x**2 + 2)*Derivative(y(x), x) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (8*a*x*y(x) + 6*x*Derivative(y(x), (x, 2))