Internal
problem
ID
[6675]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
5.
THE
EQUATION
IS
LINEAR
AND
OF
ORDER
GREATER
THAN
TWO,
page
410
Problem
number
:
66
Date
solved
:
Tuesday, September 30, 2025 at 03:50:46 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=2*y(x)*(2*f(x)*g(x)+diff(g(x),x))+(4*g(x)+diff(f(x),x)+2*diff(f(x),x)^2)*diff(y(x),x)+3*f(x)*diff(diff(y(x),x),x)+diff(diff(diff(y(x),x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=2*y[x]*(2*f[x]*g[x] + D[g[x],x]) + (4*g[x] + D[f[x],x] + 2*D[f[x],x]^2)*D[y[x],x] + 3*f[x]*D[y[x],{x,2}] + D[y[x],{x,3}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*(2*f(x)*g(x) + Derivative(g(x), x))*y(x) + (4*g(x) + 2*Derivative(f(x), x)**2 + Derivative(f(x), x))*Derivative(y(x), x) + 3*f(x)*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-4*f(x)*g(x)*y(x) - 3*f(x)*Derivative(y(x