23.5.79 problem 79

Internal problem ID [6688]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 5. THE EQUATION IS LINEAR AND OF ORDER GREATER THAN TWO, page 410
Problem number : 79
Date solved : Friday, October 03, 2025 at 02:09:44 AM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} a \,x^{2} y-6 y^{\prime }+x^{2} y^{\prime \prime \prime }&=0 \end{align*}
Maple. Time used: 0.020 (sec). Leaf size: 135
ode:=a*x^2*y(x)-6*diff(y(x),x)+x^2*diff(diff(diff(y(x),x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-c_2 \left (\left (-i+\sqrt {3}\right ) \left (-a^{4}\right )^{{2}/{3}}+i a^{3} x \right ) {\mathrm e}^{\frac {\left (-a^{4}\right )^{{1}/{3}} \left (i \sqrt {3}-1\right ) x}{2 a}}-c_3 \left (\left (-i-\sqrt {3}\right ) \left (-a^{4}\right )^{{2}/{3}}+i a^{3} x \right ) {\mathrm e}^{-\frac {\left (-a^{4}\right )^{{1}/{3}} \left (1+i \sqrt {3}\right ) x}{2 a}}+c_1 \left (a^{3} x +2 \left (-a^{4}\right )^{{2}/{3}}\right ) {\mathrm e}^{\frac {\left (-a^{4}\right )^{{1}/{3}} x}{a}}}{x} \]
Mathematica. Time used: 0.161 (sec). Leaf size: 97
ode=a*x^2*y[x] - 6*D[y[x],x] + x^2*D[y[x],{x,3}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1 e^{-\sqrt [3]{a} x} \left (\sqrt [3]{a} x+2\right )+c_2 e^{\sqrt [3]{-1} \sqrt [3]{a} x} \left (\sqrt [3]{a} x+2 (-1)^{2/3}\right )+c_3 e^{-(-1)^{2/3} \sqrt [3]{a} x} \left (\sqrt [3]{a} x-2 \sqrt [3]{-1}\right )}{x} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a*x**2*y(x) + x**2*Derivative(y(x), (x, 3)) - 6*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -x**2*(a*y(x) + Derivative(y(x), (x, 3)))/6 + Derivative(y(x), x