Internal
problem
ID
[6694]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
5.
THE
EQUATION
IS
LINEAR
AND
OF
ORDER
GREATER
THAN
TWO,
page
410
Problem
number
:
85
Date
solved
:
Tuesday, September 30, 2025 at 03:50:54 PM
CAS
classification
:
[[_3rd_order, _missing_y]]
ode:=6*n*diff(y(x),x)-2*(n+1)*x*diff(diff(y(x),x),x)+x^2*diff(diff(diff(y(x),x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=6*n*D[y[x],x] - 2*(1 + n)*x*D[y[x],{x,2}] + x^2*D[y[x],{x,3}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") n = symbols("n") y = Function("y") ode = Eq(6*n*Derivative(y(x), x) + x**2*Derivative(y(x), (x, 3)) - x*(2*n + 2)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - x*(2*n*Derivative(y(x), (x, 2)) - x*Deriva