Internal
problem
ID
[6706]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
5.
THE
EQUATION
IS
LINEAR
AND
OF
ORDER
GREATER
THAN
TWO,
page
410
Problem
number
:
97
Date
solved
:
Tuesday, September 30, 2025 at 03:51:00 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=-2*y(x)+2*x*diff(y(x),x)-x^2*diff(diff(y(x),x),x)+x^3*diff(diff(diff(y(x),x),x),x) = x*(x^2+3); dsolve(ode,y(x), singsol=all);
ode=-2*y[x] + 2*x*D[y[x],x] - x^2*D[y[x],{x,2}] + x^3*D[y[x],{x,3}] == x*(3 + x^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) - x**2*Derivative(y(x), (x, 2)) - x*(x**2 + 3) + 2*x*Derivative(y(x), x) - 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)