Internal
problem
ID
[6722]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
5.
THE
EQUATION
IS
LINEAR
AND
OF
ORDER
GREATER
THAN
TWO,
page
410
Problem
number
:
113
Date
solved
:
Tuesday, September 30, 2025 at 03:51:09 PM
CAS
classification
:
[[_3rd_order, _missing_y]]
ode:=(-x^3+3*x^2-6*x+6)*diff(diff(y(x),x),x)+x*(x^2-2*x+2)*diff(diff(diff(y(x),x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(6 - 6*x + 3*x^2 - x^3)*D[y[x],{x,2}] + x*(2 - 2*x + x^2)*D[y[x],{x,3}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x**2 - 2*x + 2)*Derivative(y(x), (x, 3)) + (-x**3 + 3*x**2 - 6*x + 6)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : CRootOf is not supported over ZZ[x]