Internal
problem
ID
[6729]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
5.
THE
EQUATION
IS
LINEAR
AND
OF
ORDER
GREATER
THAN
TWO,
page
410
Problem
number
:
120
Date
solved
:
Tuesday, September 30, 2025 at 03:51:12 PM
CAS
classification
:
[[_3rd_order, _missing_y]]
ode:=10*x^2*diff(y(x),x)+8*x^3*diff(diff(y(x),x),x)+x^2*(x^2+1)*diff(diff(diff(y(x),x),x),x) = -1+3*x^2+2*x^2*ln(x); dsolve(ode,y(x), singsol=all);
ode=10*x^2*D[y[x],x] + 8*x^3*D[y[x],{x,2}] + x^2*(1 + x^2)*D[y[x],{x,3}] == -1 + 3*x^2 + 2*x^2*Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(8*x**3*Derivative(y(x), (x, 2)) + x**2*(x**2 + 1)*Derivative(y(x), (x, 3)) - 2*x**2*log(x) + 10*x**2*Derivative(y(x), x) - 3*x**2 + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*(-x**2*Derivative(y(x), (x, 3)) - 8*