Internal
problem
ID
[6757]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
5.
THE
EQUATION
IS
LINEAR
AND
OF
ORDER
GREATER
THAN
TWO,
page
410
Problem
number
:
148
Date
solved
:
Tuesday, September 30, 2025 at 03:51:26 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=10*diff(f(x),x)*diff(y(x),x)+3*y(x)*(3*f(x)^2+diff(diff(f(x),x),x))+10*f(x)*diff(diff(y(x),x),x)+diff(diff(diff(diff(y(x),x),x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=10*D[f[x],x]*D[y[x],x] + 3*y[x]*(3*f[x]^2 + D[f[x],{x,2}]) + 10*f[x]*D[y[x],{x,2}] + D[y[x],{x,4}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*(3*f(x)**2 + Derivative(f(x), (x, 2)))*y(x) + 10*f(x)*Derivative(y(x), (x, 2)) + 10*Derivative(f(x), x)*Derivative(y(x), x) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -(-9*f(x)**2*y(x) - 10*f(x)*Derivative(y(x), (x, 2)) - 3*y(x)*De