23.5.155 problem 155

Internal problem ID [6764]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 5. THE EQUATION IS LINEAR AND OF ORDER GREATER THAN TWO, page 410
Problem number : 155
Date solved : Tuesday, September 30, 2025 at 03:51:29 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y+2 y^{\prime }+3 y^{\prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 36
ode:=y(x)+2*diff(y(x),x)+3*diff(diff(y(x),x),x)+2*diff(diff(diff(y(x),x),x),x)+diff(diff(diff(diff(y(x),x),x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {x}{2}} \left (\left (c_4 x +c_2 \right ) \cos \left (\frac {\sqrt {3}\, x}{2}\right )+\sin \left (\frac {\sqrt {3}\, x}{2}\right ) \left (c_3 x +c_1 \right )\right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 52
ode=y[x] + 2*D[y[x],x] + 3*D[y[x],{x,2}] + 2*D[y[x],{x,3}] + D[y[x],{x,4}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-x/2} \left ((c_4 x+c_3) \cos \left (\frac {\sqrt {3} x}{2}\right )+(c_2 x+c_1) \sin \left (\frac {\sqrt {3} x}{2}\right )\right ) \end{align*}
Sympy. Time used: 0.167 (sec). Leaf size: 37
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + 2*Derivative(y(x), x) + 3*Derivative(y(x), (x, 2)) + 2*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (\left (C_{1} + C_{2} x\right ) \sin {\left (\frac {\sqrt {3} x}{2} \right )} + \left (C_{3} + C_{4} x\right ) \cos {\left (\frac {\sqrt {3} x}{2} \right )}\right ) e^{- \frac {x}{2}} \]