23.5.157 problem 157

Internal problem ID [6766]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 5. THE EQUATION IS LINEAR AND OF ORDER GREATER THAN TWO, page 410
Problem number : 157
Date solved : Tuesday, September 30, 2025 at 03:51:30 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} -y^{\prime }+y^{\prime \prime }-3 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 184
ode:=-diff(y(x),x)+diff(diff(y(x),x),x)-3*diff(diff(diff(y(x),x),x),x)+diff(diff(diff(diff(y(x),x),x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \,{\mathrm e}^{\frac {\left (\left (27+3 \sqrt {57}\right )^{{2}/{3}}+3 \left (27+3 \sqrt {57}\right )^{{1}/{3}}+6\right ) x}{3 \left (27+3 \sqrt {57}\right )^{{1}/{3}}}}-c_3 \,{\mathrm e}^{-\frac {\left (6+\left (27+3 \sqrt {57}\right )^{{2}/{3}}-6 \left (27+3 \sqrt {57}\right )^{{1}/{3}}\right ) x}{6 \left (27+3 \sqrt {57}\right )^{{1}/{3}}}} \sin \left (\frac {\sqrt {3}\, \left (\left (27+3 \sqrt {3}\, \sqrt {19}\right )^{{2}/{3}}-6\right ) x}{6 \left (27+3 \sqrt {3}\, \sqrt {19}\right )^{{1}/{3}}}\right )+c_4 \,{\mathrm e}^{-\frac {\left (6+\left (27+3 \sqrt {57}\right )^{{2}/{3}}-6 \left (27+3 \sqrt {57}\right )^{{1}/{3}}\right ) x}{6 \left (27+3 \sqrt {57}\right )^{{1}/{3}}}} \cos \left (\frac {\sqrt {3}\, \left (\left (27+3 \sqrt {3}\, \sqrt {19}\right )^{{2}/{3}}-6\right ) x}{6 \left (27+3 \sqrt {3}\, \sqrt {19}\right )^{{1}/{3}}}\right ) \]
Mathematica. Time used: 0.021 (sec). Leaf size: 143
ode=-D[y[x],x] + D[y[x],{x,2}] - 3*D[y[x],{x,3}] + D[y[x],{x,4}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_3 \exp \left (x \text {Root}\left [\text {$\#$1}^3-3 \text {$\#$1}^2+\text {$\#$1}-1\&,3\right ]\right )}{\text {Root}\left [\text {$\#$1}^3-3 \text {$\#$1}^2+\text {$\#$1}-1\&,3\right ]}+\frac {c_2 \exp \left (x \text {Root}\left [\text {$\#$1}^3-3 \text {$\#$1}^2+\text {$\#$1}-1\&,2\right ]\right )}{\text {Root}\left [\text {$\#$1}^3-3 \text {$\#$1}^2+\text {$\#$1}-1\&,2\right ]}+\frac {c_1 \exp \left (x \text {Root}\left [\text {$\#$1}^3-3 \text {$\#$1}^2+\text {$\#$1}-1\&,1\right ]\right )}{\text {Root}\left [\text {$\#$1}^3-3 \text {$\#$1}^2+\text {$\#$1}-1\&,1\right ]}+c_4 \end{align*}
Sympy. Time used: 0.333 (sec). Leaf size: 184
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 3*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{x \left (- \frac {\sqrt [3]{\frac {\sqrt {57}}{9} + 1}}{2} - \frac {1}{3 \sqrt [3]{\frac {\sqrt {57}}{9} + 1}} + 1\right )} \sin {\left (\frac {\sqrt {3} x \left (- 3 \sqrt [3]{\frac {\sqrt {57}}{9} + 1} + \frac {2}{\sqrt [3]{\frac {\sqrt {57}}{9} + 1}}\right )}{6} \right )} + C_{3} e^{x \left (- \frac {\sqrt [3]{\frac {\sqrt {57}}{9} + 1}}{2} - \frac {1}{3 \sqrt [3]{\frac {\sqrt {57}}{9} + 1}} + 1\right )} \cos {\left (\frac {\sqrt {3} x \left (- 3 \sqrt [3]{\frac {\sqrt {57}}{9} + 1} + \frac {2}{\sqrt [3]{\frac {\sqrt {57}}{9} + 1}}\right )}{6} \right )} + C_{4} e^{x \left (\frac {2}{3 \sqrt [3]{\frac {\sqrt {57}}{9} + 1}} + 1 + \sqrt [3]{\frac {\sqrt {57}}{9} + 1}\right )} \]