23.5.169 problem 169

Internal problem ID [6778]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 5. THE EQUATION IS LINEAR AND OF ORDER GREATER THAN TWO, page 410
Problem number : 169
Date solved : Tuesday, September 30, 2025 at 03:51:37 PM
CAS classification : [[_high_order, _missing_y]]

\begin{align*} 12 y^{\prime \prime }+8 x y^{\prime \prime \prime }+x^{2} y^{\prime \prime \prime \prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 19
ode:=12*diff(diff(y(x),x),x)+8*x*diff(diff(diff(y(x),x),x),x)+x^2*diff(diff(diff(diff(y(x),x),x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 x +\frac {c_3}{x^{2}}+\frac {c_4}{x} \]
Mathematica. Time used: 0.013 (sec). Leaf size: 27
ode=12*D[y[x],{x,2}] + 8*x*D[y[x],{x,3}] + x^2*D[y[x],{x,4}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {3 c_2 x+c_1}{6 x^2}+c_4 x+c_3 \end{align*}
Sympy. Time used: 0.059 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 4)) + 8*x*Derivative(y(x), (x, 3)) + 12*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {C_{2}}{x^{2}} + \frac {C_{3}}{x} + C_{4} x \]