Internal
problem
ID
[6781]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
5.
THE
EQUATION
IS
LINEAR
AND
OF
ORDER
GREATER
THAN
TWO,
page
410
Problem
number
:
172
Date
solved
:
Friday, October 03, 2025 at 02:09:51 AM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=-c^4*y(x)+16*(1+a-b)*(2+a-b)*diff(diff(y(x),x),x)+32*(2+a-b)*x*diff(diff(diff(y(x),x),x),x)+16*x^2*diff(diff(diff(diff(y(x),x),x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=-(c^4*y[x]) + 16*(1 + a - b)*(2 + a - b)*D[y[x],{x,2}] + 32*(2 + a - b)*x*D[y[x],{x,3}] + 16*x^2*D[y[x],{x,4}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") y = Function("y") ode = Eq(-c**4*y(x) + 16*x**2*Derivative(y(x), (x, 4)) + x*(32*a - 32*b + 64)*Derivative(y(x), (x, 3)) + (a - b + 2)*(16*a - 16*b + 16)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : solve: Cannot solve -c**4*y(x) + 16*x**2*Derivative(y(x), (x, 4)) + x*(32*a -