Internal
problem
ID
[6789]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
5.
THE
EQUATION
IS
LINEAR
AND
OF
ORDER
GREATER
THAN
TWO,
page
410
Problem
number
:
180
Date
solved
:
Tuesday, September 30, 2025 at 03:51:42 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=A4*y(x)+A3*x*diff(y(x),x)+A2*x^2*diff(diff(y(x),x),x)+A1*x^3*diff(diff(diff(y(x),x),x),x)+x^4*diff(diff(diff(diff(y(x),x),x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=A4*y[x] + A3*x*D[y[x],x] + A2*x^2*D[y[x],{x,2}] + A1*x^3*D[y[x],{x,3}] + x^4*D[y[x],{x,4}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") A1 = symbols("A1") A2 = symbols("A2") A3 = symbols("A3") A4 = symbols("A4") y = Function("y") ode = Eq(A1*x**3*Derivative(y(x), (x, 3)) + A2*x**2*Derivative(y(x), (x, 2)) + A3*x*Derivative(y(x), x) + A4*y(x) + x**4*Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-A4*y(x) + x**2*(-A1*x*Derivative(y(x), (