Internal
problem
ID
[6791]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
5.
THE
EQUATION
IS
LINEAR
AND
OF
ORDER
GREATER
THAN
TWO,
page
410
Problem
number
:
182
Date
solved
:
Tuesday, September 30, 2025 at 03:51:43 PM
CAS
classification
:
[[_high_order, _fully, _exact, _linear]]
ode:=exp(x)*y(x)+4*exp(x)*diff(y(x),x)+6*exp(x)*diff(diff(y(x),x),x)+4*(2+exp(x))*diff(diff(diff(y(x),x),x),x)+(exp(x)+2*x)*diff(diff(diff(diff(y(x),x),x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=E^x*y[x] + 4*E^x*D[y[x],x] + 6*E^x*D[y[x],{x,2}] + 4*(2 + E^x)*D[y[x],{x,3}] + (E^x + 2*x)*D[y[x],{x,4}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((2*x + exp(x))*Derivative(y(x), (x, 4)) + (4*exp(x) + 8)*Derivative(y(x), (x, 3)) + y(x)*exp(x) + 4*exp(x)*Derivative(y(x), x) + 6*exp(x)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -(-2*x*Derivative(y(x), (x, 4)) + (-y(x) - 6*Derivative(y(x), (x