Internal
problem
ID
[6810]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
6.
THE
EQUATION
IS
NONLINEAR
AND
OF
ORDER
GREATER
THAN
TWO,
page
427
Problem
number
:
11
Date
solved
:
Friday, October 03, 2025 at 02:09:54 AM
CAS
classification
:
[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]
ode:=40*diff(y(x),x)^3-45*y(x)*diff(y(x),x)*diff(diff(y(x),x),x)+9*y(x)^2*diff(diff(diff(y(x),x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=40*D[y[x],x]^3 - 45*y[x]*D[y[x],x]*D[y[x],{x,2}] + 9*y[x]^2*D[y[x],{x,3}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(9*y(x)**2*Derivative(y(x), (x, 3)) - 45*y(x)*Derivative(y(x), x)*Derivative(y(x), (x, 2)) + 40*Derivative(y(x), x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE (sqrt(59049*y(x)**4*Derivative(y(x), (x, 3))**2/1600 - 19683*y(x