23.6.11 problem 11

Internal problem ID [6810]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 6. THE EQUATION IS NONLINEAR AND OF ORDER GREATER THAN TWO, page 427
Problem number : 11
Date solved : Friday, October 03, 2025 at 02:09:54 AM
CAS classification : [[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

\begin{align*} 40 {y^{\prime }}^{3}-45 y y^{\prime } y^{\prime \prime }+9 y^{2} y^{\prime \prime \prime }&=0 \end{align*}
Maple. Time used: 0.082 (sec). Leaf size: 85
ode:=40*diff(y(x),x)^3-45*y(x)*diff(y(x),x)*diff(diff(y(x),x),x)+9*y(x)^2*diff(diff(diff(y(x),x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= {\mathrm e}^{\int \operatorname {RootOf}\left (-6 \int _{}^{\textit {\_Z}}\frac {1}{4 \textit {\_h}^{2}+\sqrt {c_1 \left (4 \textit {\_h}^{2}+c_1 \right )}+c_1}d \textit {\_h} +x +c_2 \right )d x +c_3} \\ y &= {\mathrm e}^{\int \operatorname {RootOf}\left (6 \int _{}^{\textit {\_Z}}-\frac {1}{4 \textit {\_h}^{2}-\sqrt {c_1 \left (4 \textit {\_h}^{2}+c_1 \right )}+c_1}d \textit {\_h} +x +c_2 \right )d x +c_3} \\ \end{align*}
Mathematica. Time used: 0.07 (sec). Leaf size: 21
ode=40*D[y[x],x]^3 - 45*y[x]*D[y[x],x]*D[y[x],{x,2}] + 9*y[x]^2*D[y[x],{x,3}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{(x (c_3 x+c_2)+c_1){}^{3/2}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*y(x)**2*Derivative(y(x), (x, 3)) - 45*y(x)*Derivative(y(x), x)*Derivative(y(x), (x, 2)) + 40*Derivative(y(x), x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE (sqrt(59049*y(x)**4*Derivative(y(x), (x, 3))**2/1600 - 19683*y(x