23.6.24 problem 25

Internal problem ID [6823]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 6. THE EQUATION IS NONLINEAR AND OF ORDER GREATER THAN TWO, page 427
Problem number : 25
Date solved : Friday, October 03, 2025 at 02:09:55 AM
CAS classification : [[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

\begin{align*} 40 {y^{\prime \prime \prime }}^{3}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+9 {y^{\prime \prime }}^{2} y^{\left (5\right )}&=0 \end{align*}
Maple. Time used: 0.053 (sec). Leaf size: 113
ode:=40*diff(diff(diff(y(x),x),x),x)^3-45*diff(diff(y(x),x),x)*diff(diff(diff(y(x),x),x),x)*diff(diff(diff(diff(y(x),x),x),x),x)+9*diff(diff(y(x),x),x)^2*diff(diff(diff(diff(diff(y(x),x),x),x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= c_1 x +c_2 \\ y &= \int \int \operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}\frac {1}{\operatorname {RootOf}\left (-\ln \left (\textit {\_f} \right )-6 \int _{}^{\textit {\_Z}}\frac {\textit {\_k}}{\sqrt {\textit {\_k}^{4}-c_1}}d \textit {\_k} +c_2 \right ) \textit {\_f}^{{3}/{2}}}d \textit {\_f} +x +c_3 \right )d x d x +c_4 x +c_5 \\ y &= \int \int \operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}\frac {1}{\operatorname {RootOf}\left (-\ln \left (\textit {\_f} \right )+6 \int _{}^{\textit {\_Z}}\frac {\textit {\_k}}{\sqrt {\textit {\_k}^{4}-c_1}}d \textit {\_k} +c_2 \right ) \textit {\_f}^{{3}/{2}}}d \textit {\_f} +x +c_3 \right )d x d x +c_4 x +c_5 \\ \end{align*}
Mathematica. Time used: 0.041 (sec). Leaf size: 43
ode=40*D[y[x],{x,3}]^3 - 45*D[y[x],{x,2}]*D[y[x],{x,3}]*D[y[x],{x,4}] + 9*D[y[x],{x,2}]^2*D[y[x],{x,5}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_5 x-\frac {4 \sqrt {x (c_3 x+c_2)+c_1}}{c_2{}^2-4 c_1 c_3}+c_4 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*Derivative(y(x), (x, 2))**2*Derivative(y(x), (x, 5)) - 45*Derivative(y(x), (x, 2))*Derivative(y(x), (x, 3))*Derivative(y(x), (x, 4)) + 40*Derivative(y(x), (x, 3))**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE (sqrt(59049*Dummy_104(x)**4*Derivative(Dummy_104(x), (x, 3))**2/