Internal
problem
ID
[6823]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
6.
THE
EQUATION
IS
NONLINEAR
AND
OF
ORDER
GREATER
THAN
TWO,
page
427
Problem
number
:
25
Date
solved
:
Friday, October 03, 2025 at 02:09:55 AM
CAS
classification
:
[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]
ode:=40*diff(diff(diff(y(x),x),x),x)^3-45*diff(diff(y(x),x),x)*diff(diff(diff(y(x),x),x),x)*diff(diff(diff(diff(y(x),x),x),x),x)+9*diff(diff(y(x),x),x)^2*diff(diff(diff(diff(diff(y(x),x),x),x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=40*D[y[x],{x,3}]^3 - 45*D[y[x],{x,2}]*D[y[x],{x,3}]*D[y[x],{x,4}] + 9*D[y[x],{x,2}]^2*D[y[x],{x,5}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(9*Derivative(y(x), (x, 2))**2*Derivative(y(x), (x, 5)) - 45*Derivative(y(x), (x, 2))*Derivative(y(x), (x, 3))*Derivative(y(x), (x, 4)) + 40*Derivative(y(x), (x, 3))**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE (sqrt(59049*Dummy_104(x)**4*Derivative(Dummy_104(x), (x, 3))**2/