24.1.5 problem Example, page 33

Internal problem ID [6828]
Book : Differential and integral calculus, vol II By N. Piskunov. 1974
Section : Chapter 1
Problem number : Example, page 33
Date solved : Tuesday, September 30, 2025 at 03:53:01 PM
CAS classification : [_Bernoulli]

\begin{align*} y^{\prime }+x y&=x^{3} y^{3} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 35
ode:=diff(y(x),x)+x*y(x) = x^3*y(x)^3; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {1}{\sqrt {{\mathrm e}^{x^{2}} c_1 +x^{2}+1}} \\ y &= -\frac {1}{\sqrt {{\mathrm e}^{x^{2}} c_1 +x^{2}+1}} \\ \end{align*}
Mathematica. Time used: 7.131 (sec). Leaf size: 50
ode=D[y[x],x]+x*y[x]==x^3*y[x]^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {1}{\sqrt {x^2+c_1 e^{x^2}+1}}\\ y(x)&\to \frac {1}{\sqrt {x^2+c_1 e^{x^2}+1}}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.512 (sec). Leaf size: 39
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**3*y(x)**3 + x*y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {\frac {1}{C_{1} e^{x^{2}} + x^{2} + 1}}, \ y{\left (x \right )} = \sqrt {\frac {1}{C_{1} e^{x^{2}} + x^{2} + 1}}\right ] \]