Internal
problem
ID
[6874]
Book
:
Differential
Equations,
By
George
Boole
F.R.S.
1865
Section
:
Chapter
4
Problem
number
:
7.1
Date
solved
:
Tuesday, September 30, 2025 at 03:59:50 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
ode:=(x^3*y(x)^3+x^2*y(x)^2+x*y(x)+1)*y(x)+(x^3*y(x)^3-x^2*y(x)^2-x*y(x)+1)*x*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^3*y[x]^3+x^2*y[x]^2+x*y[x]+1)*y[x]+(x^3*y[x]^3-x^2*y[x]^2-x*y[x]+1)*x*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x**3*y(x)**3 - x**2*y(x)**2 - x*y(x) + 1)*Derivative(y(x), x) + (x**3*y(x)**3 + x**2*y(x)**2 + x*y(x) + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)