25.6.10 problem 10

Internal problem ID [6894]
Book : Differential Equations, By George Boole F.R.S. 1865
Section : Chapter 7
Problem number : 10
Date solved : Tuesday, September 30, 2025 at 04:00:24 PM
CAS classification : [_quadrature]

\begin{align*} x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2}&=0 \end{align*}
Maple. Time used: 0.120 (sec). Leaf size: 581
ode:=x^2*(1+diff(y(x),x)^2)^3-a^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}
Mathematica. Time used: 1.711 (sec). Leaf size: 216
ode=x^2*(1+(D[y[x],x])^2)^3-a^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -x \left (\frac {a^{2/3}}{x^{2/3}}-1\right )^{3/2}+c_1\\ y(x)&\to x \left (\frac {a^{2/3}}{x^{2/3}}-1\right )^{3/2}+c_1\\ y(x)&\to c_1-x \left (-1-\frac {i \left (\sqrt {3}-i\right ) a^{2/3}}{2 x^{2/3}}\right )^{3/2}\\ y(x)&\to x \left (-1-\frac {i \left (\sqrt {3}-i\right ) a^{2/3}}{2 x^{2/3}}\right )^{3/2}+c_1\\ y(x)&\to c_1-x \left (-1+\frac {i \left (\sqrt {3}+i\right ) a^{2/3}}{2 x^{2/3}}\right )^{3/2}\\ y(x)&\to x \left (-1+\frac {i \left (\sqrt {3}+i\right ) a^{2/3}}{2 x^{2/3}}\right )^{3/2}+c_1 \end{align*}
Sympy. Time used: 2.895 (sec). Leaf size: 221
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a**2 + x**2*(Derivative(y(x), x)**2 + 1)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} - \int \sqrt {\sqrt [3]{\frac {a^{2}}{x^{2}}} - 1}\, dx, \ y{\left (x \right )} = C_{1} + \int \sqrt {\sqrt [3]{\frac {a^{2}}{x^{2}}} - 1}\, dx, \ y{\left (x \right )} = C_{1} - \frac {\sqrt {2} \int \sqrt {- \sqrt [3]{\frac {a^{2}}{x^{2}}} - \sqrt {3} i \sqrt [3]{\frac {a^{2}}{x^{2}}} - 2}\, dx}{2}, \ y{\left (x \right )} = C_{1} + \frac {\sqrt {2} \int \sqrt {- \sqrt [3]{\frac {a^{2}}{x^{2}}} - \sqrt {3} i \sqrt [3]{\frac {a^{2}}{x^{2}}} - 2}\, dx}{2}, \ y{\left (x \right )} = C_{1} - \frac {\sqrt {2} \int \sqrt {- \sqrt [3]{\frac {a^{2}}{x^{2}}} + \sqrt {3} i \sqrt [3]{\frac {a^{2}}{x^{2}}} - 2}\, dx}{2}, \ y{\left (x \right )} = C_{1} + \frac {\sqrt {2} \int \sqrt {- \sqrt [3]{\frac {a^{2}}{x^{2}}} + \sqrt {3} i \sqrt [3]{\frac {a^{2}}{x^{2}}} - 2}\, dx}{2}\right ] \]